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Jaynes± Cummings Model and Trapping of Atoms
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We present a semiclassical approach to the trapping problem of atoms in the
Jaynes±Cummings model. We express detuning in two ways, first by considering
detuning as the superposition of many harmonic waves, ther other by establishing
a relationship between detuning and the distribution of the momentum of atoms.
In these two cases we find the appearance of trapping atoms; we discuss the
quantum chaotic movement of atoms irradiated with a strong laser.

1. INTRODUCTION

During the last two decades, ion trapping has attracted increasing theoret-

ical and experimental attention. There are many different quantum models

to explain the trapping of ions or atoms, such as the MOT or VSCPT models

(Aspect et al., 1988; Barenco et al., 1995; Cirac and Zoller, 1995; Gupta et
al., 1996; Kasevich and Chu, 1992; Lee et al., 1996; Leopold and Percival,

1978; Raab et al., 1987). The Jaynes±Cummings (JC) model is an important
full quantum mechanical model of two-level atoms interacting with a laser.

We have discussed a unified and standardized procedure to solve full quantum

nonlinear JC models (Yang et al., 1997). In this paper, we will present a

semiclassical method to study the trapping of atomis in JC models and their

quantum chaotic motion. Leopold and Percival (1978) used classical chaos

theory to describe successfully the interaction between a high-excited-state
atom and microwaves. Can we use the JC model for the interaction between

atoms and many photons according to the same method?

We begin with the following system:

Hq 5 v b ² b 1
1

2
E12 s z 1 H int (1)
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where b ² and b are the creation and annihilation operators of the photon,

respectively, v is the photon energy ( " 5 1), E12 is the difference between

two levels of the atom, s z is the transition operator, Hint 5 g (b 1 s 2 1 1 b s 1 2 )
is the interaction Hamiltonian, and g is the coupling coefficient. Here s 2 1

5 Z 2 & ^ 1 Z B and s 1 2 5 Z 1 & ^ 2 Z . We can express (1) formally as (Yang et
al., 1997)

H 8q 5 v (N 2 1) 1
1

2
V s x (2)

where

s x 5
D
V

s z 1
V
V

s x , N 5 b ² b 1 s 1 1 , V 5 ! D 2 1 V 2

and

V 5 2g ! b ² b 1 s 1 1

N is the sum of the photon number and the number of the atomic excited

state, and is a conserved quantity; V is the Rabi operator, and s x, s z are

Pauli operators. Equation (2) describes a spin-1/2 linear harmonic oscillator

in a magnetic field. Therefore a two-level atom interacting with photons is

equivalent to a linear harmonic oscillator interacting with a magnetic field.
When the H8int 5 1/2 V s x term of equation (2) is very large, it is very

difficult to apply quantum perturbation theory. We give the classical corre-

spondence to equation (2) as follows:

Hc 5
1

2
zÇ 2 1

1

2
v 2z2 1

1

2
D (3)

The first two terms correspond to a linear harmonic oscillator with

frequency v , the third term is the average value in the x and y direction of

H8int; ^ s x & 5 0. We obtain

H8int 5
1

2
V s z D Y V 5 6 D /2 (4)

We have absorbed the sign into D . Equation is the basis for studying

the trapping problem of atoms in the JC model.

2. TWO METHODS TO CONSTRUCT DETUNING

in order to solve equation (3), we have to know the concrete form of

the detuning. There are two ways to do this; one is to consider detuning as

the superposition many harmonic waves, the other is to establish a relationship
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between detuning and the distribution of the momentum of atoms. We illus-

trate the two methods using two examples.

1. D expanded as the superposition of many harmonic waves. Let

D 5 A cos qx o
n 5 2 `

`

cos(n
2 p t

T
(5)

Because of

o
n 5 2 `

cos 1 n 2 p t

T 2 5 T o
n

d (t 2 nT)

we have

D 5 AT cos qx o
n

d (t 2 nT) (6)

Equation (6) shows that atoms absorb detuning in short pulses with

period T. The nth pulse time is tn 5 nT; denote zn 5 z (tn 2 0), zÇ n 5 zÇ (tn 2
0). The pulses affect only the velocity of the linear oscillator. We have

z (tn 1 0) 5 z (tn 2 0) 5 zn
(7)

zÇ (tn 1 0) 5 zÇ (tn 2 0) 1
q

2
AT sin qz

From equations (3) and (7) we have

zn 1 1 5 cos v T 1
1

v
(zÇ n 1

qAT

2
sin qzn) sin v T

(8)

zn 1 1 5 (zÇ n 1
qAT

2
sin qzn) cos v T 2 v zn sin v T

Let k 5 q2AT/2 v , u 5 qzÇ / v , v 5 2 qz, and a 5 v T; we rewrite equations

(8) as

un 1 1 5 (un 1 k sin vn) cos a 1 vn sin a
(9)

vn 1 1 5 2 (un 1 k sin vn) sin a 1 vn cos a

2. D expressed as the product of the probability distribution of the

momentum and the kinetic energy of atoms. When D . 0, atoms absorb D ,

which is converted to the atoms’ kinetic energy, whereas when D , 0, atoms

lose 2 D kinetic energy, which is converted to into the atoms’ transition
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energy (Yang et al., 1997). Therefore we can assume that detuning D is

directly proportional to the product of the probability distribution of the

momentum and kinetic energy of atoms,

D 5 2 Ae 2 b V 2
V2 o

n
d (t 2 nT ) (10)

where V is the speed of translational motion and b is a constant.

When b is a small value

D 5 AV2 ( b V2 2 1) o
n

d (t 2 nT) (11)

Let u 5 qzÇ / v , v 5 V 5 2 qz, and a 5 v T; we obtain

un 1 1 5 F un 1
Aq2

v
( b v3

n 2 vn) G cos a 1 vn sin a
(12)

vn 1 1 5 2 F un 1
Aq2

v
( b v3

n 2 vn) G sin a 1 vn cos a

3. TRAPPING OF ATOMS IN JC MODEL IN PHASE SPACE

We noticed that u and v are proportional to coordinate and velocity,

respectively. Now we study the trapping of atoms in the JC model and their

chaotic motion.

1. In our numerical calculation, the orders of maginitude of the parame-

ters are

k 5 0±102, u0 5 10 2 2±102, v0 5 100±101, a 5 10 2 1±10 2 3

In order to show the trapping of the atom clearly, we treat (5) in phase space

with position is scaled as with v. Then we expand the coordinate v; the

trajectory of the oscillator is two ellipses, which correspond to two levels of

the atom, respectively.

Figure 1 describes the process. In Fig. 1 the trajectory is a standard
ellipse owing to the absence of a perturbation potential. In Fig. 1b with a

perturbation coefficient k 5 0.40, the ellipse trajectory is disturbed locally;

some parts are concave toward the center, corresponding to low potential

and high kinetic energy, other parts are convex toward the center, corres-

ponding to high potential and low kinetic energy. At some high-potential

points of a low-energy-level ellipse upward and downward orbits are very
close to each other. When k 5 0.54 (Fig. 1c) the oscillator trajectory

becomes closed and trapping occurs. The situation is the same for the high-

level ellipse (Figs. 1d, 1e); the oscillator trajectory drops into a potential

trap. The initial position is not in the center of the potential trap, and moves
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Fig. 1. The trapping of atoms in the JC model.
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Fig. 2. Spectroscopic splitting of trapped atoms.

toward the center of the potential trap step by step. This gives the whole

process of the trapping of atoms from the energy view of point.

2. Let us solve equation (12). We draw similar conclusions to equation

(10) (Fig. 2). When the perturbation intensity is increased, an interesting

phenomenon occurs, level splitting and complicated periodic motion.

Finally, the trapping of atoms disappears and chaos occurs; the oscillator

walks randomly in phase space (Fig. 2f). The JC model of a two-level

system allows degeneration. Therefore the spectroscopic splitting of

trapped atoms is reasonable. We draw the same conclusions from classical

chaos theory and find the details of the dynamics. Trapping is limited by

perturbation. When the perturbation intensity exceeds some critical value,

chaos occurs and trapping is destroyed. We also find the avoidance of

level, crossing, which is an important sign of quantum chaos (Fig. 3).

Using this procedure, we can study quantum movement from regular to

nonregular.
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Fig. 3. The avoidance of level crossing.
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